Substance Use

Choline supplementation as a neurodevelopmental intervention in fetal alcohol spectrum disorders

Principal Investigator:

Jeffrey R. Wozniak, Ph.D., L.P. (Department of Psychiatry)

[+/-] Show/Hide Collaborators & Abstract
Collaborators:

Michael K. Georgieff, M.D. (Department of Pediatrics), Stephanie Carlson, Ph.D. (Institute of Child Development)

Abstract:

Recent data indicate that 2-5% of the U.S. population has Fetal Alcohol Spectrum Disorder (FASD) – a set of physical anomalies and neurodevelopmental deficits caused by prenatal alcohol exposure (May, Fiorentino et al. 2011). Despite the profound public health burden posed by FASD, there have been very few treatment studies of any sort in this population and no clinical trials that have attempted to directly address the neurodevelopmental deficits that are so debilitating for these individuals. There is, however, a promising line of translational research that suggests a potential role for micronutrient interventions. At the top of the list is choline, an essential nutrient for humans that is critical for normal brain development during gestation and early childhood. Although the human body produces choline, the demand cannot be met entirely endogenously and thus, some choline must be consumed in food. Extensive pre-clinical work has provided evidence that choline supplementation is effective in attenuating the neurodevelopmental deficits caused by prenatal alcohol exposure in animal models (Thomas, Biane et al. 2007, Ryan, Williams et al. 2008). Our group has taken the initial steps toward translating this work to humans. We first conducted a two-year pilot study to ensure the feasibility, tolerability, and safety of choline supplementation in 20 children with FASD (Wozniak, Fuglestad et al. 2013). Next, we completed a three-year pilot study of 40 additional children with the goals of establishing a target dosage for young children and testing efficacy in the domain of memory (Wozniak, Fuglestad et al. under review). Together, data from these two studies demonstrate that choline supplementation in 2-3 year old children with FASD improves explicit memory – a core function that is essential for normal cognitive development. Based on the time periods in which choline is effective in pre-clinical models of FASD and on the fact that the first years of human life represent a period of intense brain development, choline supplementation in young children appears to have significant potential as an intervention for neurodevelopmental disorders including FASD.

Neuromodulation augmented cognitive remediation to improve executive dysfunction in fetal alcohol spectrum disorder

Principal Investigator:

Jeffrey R. Wozniak, Ph.D., L.P. (Department of Psychiatry)

[+/-] Show/Hide Collaborators & Abstract
Collaborators:

Christopher J. Boys, Ph.D. (Department of Pediatrics), Kelvin Lim, MD (Department of Psychiatry)

Abstract:

Prenatal alcohol exposure (PAE) has profound detrimental effects on brain development and, as a result, has permanent consequences for cognition, learning, and behavior. Individuals with Fetal Alcohol Spectrum Disorders (FASD) commonly have a range of neurocognitive impairments that directly lead to practical problems with learning, attention, working memory, task planning/execution, and decision making, among other areas of functioning. Despite the profound public health burden posed by FASD, there have been very few treatment studies of any sort in this population. Our group conducted the first randomized controlled trials of the nutrient choline as a neurodevelopmental intervention in 2-5 year old children with FASD, in which we demonstrated effects on sequential memory.  For older children, a very different neurodevelopmental target is needed, and for this we have narrowed our focus to “plasticity” (the brain’s ability to adapt).  We propose to conduct a novel pilot study to examine the effects of cognitive remediation training augmented with tDCS in children and adolescents with FASD. Functional magnetic resonance imaging will be collected to provide preliminary data of brain circuitry changes created by this intervention.